Medium Interaction Honeypots

Georg Wicherski

April 7, 2006

Abstract

Autonomously spreading malware has been a global
threat to the Internet Community ever since the
existence of the Internet as a large-scale computer
network. A specialization of this threat are botnets;
recent trends towards commercialization of botnets
made the situation even worse. This document out-
lines the weaknesses of different existing approaches
to catch malware — especially bots — and shows how
Medium Interaction Honeypots solved these prob-
lems. It evaluates the success of Medium Interac-
tion Homeypots so far and additionally points out
some other related work.

1 The Problem: Botnets

One of the biggest problems the Internet is facing
today — besides spam — is autonomously spread-
ing malware. Some malware was written solely for
proof of concept or education of the author, other
malware was written with solely destructive inten-
tions in mind. The biggest threat is however posed
by remotely controllable backdoors. They not only
allow commercial industry espionage on a highly
advanced level, recent threats have become critical
even to the end customer’s computer.

Controllable networks of many infected nodes
are currently referred to as botnets [1] as most
of these are even today still based upon the IRC
control and an early term for non-human, control-
lable IRC servants (even though not malicious) was
bot. However, new protocols are now emerging for
command and control of such botnets, with the
most widespread alternative to IRC being HTTP.
Another interesting trend is to use DNS as com-
mand and control protocol, although this is not in
widespread use yet.

Botnets pose a severe threat to today’s Internet

community for two main reasons: first of all, the
sum of resources available by a single botnet is so
immense that they can cause severe damages. A
botnet of 5,000 DSL 6MBit bots with a common
upstream of 576 kbit/s has a total theoretical band-
width of 2812.5 MBit/s. Now that there are bot-
nets controling up to 50,000 hosts which yields to
a practical bandwidth of 20 GBit/s, it is obvious
that any webhoster or even upstream provider can
be taken down with a Distributed Denial of Service
attack. This type of abuse through botnets was the
most common from 1997 through 2003 as it did not
require any real technical sophistication. Another
critical risk created by the control of so many re-
sources is the sending and delivering huge amounts
of spam.

Attacker

Figure 1: Typical IRC Botnet layout

The other reason is that botnets offer great po-
tential to steal personal data as each bot is a lo-
cal backdoor on one single user’s computer. Bots
nowadays usually carry a keylogger with them and
of course allow to install additional backdoor exe-
cutables, e.g. for intercepting bank transfers before
they actually reach the bank’s webserver. Thus,
botnets allow for identity theft of end-customers;
credit card trading is already a well established
business between bot herders and their customers.

Therefore it is of great importance to the Inter-
net’s security to track and then shutdown botnets.
To achieve these goals, we need certain informa-
tion about the botnets. In the following, we will
evaluate how this intelligence can be obtained.

1.1 Netflow based detection

Netflow based detection can be implemented by ei-
ther observing uplinks of big networks on the trans-
port or the application layer. While the transport
layer observations do not require as much resources
as application layer observations, they do lead to
less information.

Although it is possible via statistical analysis to
get an overview of which nodes are infected and at-
tempt to spread, it is not possible to get detailed
information about new botnets or the exploits the
bots use to spread. Furthermore, statistical anal-
ysis requires huge datasets and is prone to false
positives. The outbreak of a new autonomously
spreading worm cannot be determined at the out-
set of the epidemic but only when already a large
set of hosts is infected and generate sufficient noise
to be recognized.

Application layer observations can provide much
more information, but on the contrary require de-
tailed processing for each individual protocol and
additionally huge and therefore expensive amounts
of computing power to observe big data links. How-
ever, application layer observations do not only
provide information about the infected nodes but
also about the command and control structure in
the case there is a control structure and not only
a purely static payload. The required knowledge
about the protocol and the flowing network data
make netflow based detection useless in case of Oday
intrusion vectors.

Obviously it can be concluded that netflow based
detection can be used as an additional measure to

secure your networks but is not well suited to de-
tect emerging botnets and find new command and
control mechanisms. Deploying netflow based de-
tection for botnet finding would only turn your pro-
duction network into a super honeypot.

1.2 Honeypot based detection

There were already existing technologies to learn
from attackers and to recognize new and recent
trends in Blackhat activities. Honeypots have been
well established since the late nineties and present a
good way to obtain knowledge about current Black-
hat technology. The ability to gain information
about botnets and autonomously spreading mal-
ware with Honeypots will be discussed in the fol-
lowing.

1.2.1 Low Interaction Honeypots

Low Interaction Honeypots are similar to transport
layer netflow observations in terms of botnet detec-
tion. Low Interaction Honeypots only simulate the
transport layer of large networks on a single phys-
ical host, but can hardly be used to gain informa-
tion on the application layer. Therefore when it
comes to the detection of new botnets and learning
about emerging malware technologies, the same re-
strictions apply here as with application layer based
netflow observation.

1.2.2 High Interaction Honeypots

High Interaction Honeypots are real, vulnerable
systems, often running in a virtual machine envi-
ronment and behind a rate limiting firewall. Due
to the nature of High Interaction Honeypots, they
can be used to detect Oday attack vectors and auto-
matically adapt to any new command and control
protocol. Therefore at first glance, it seems well
suited to detect botnets, since after infection, the
honeypot even automatically connects to the com-
mand and control framework, e.g. a central IRC
server. Therefore there is even no need to differen-
tiate between bot acquisition and botnet monitor-
ing.

However, there are some major disadvantages in
using High Interaction Honeypots for the capture
of autonomously spreading malware and later on
observing the control facilities. First of all, most

exploits used by malware utilize certain system de-
pendent data and are not reliable across all OS ver-
sions and patch levels. This means that system
services can be crashed by wrong offsets and such
used in exploits, ultimately resulting in a reboot of
the honeypot. Therefore, performance is extremely
limited as for example during the Sasser spread, a
Windows 2000 Honeypot usually rebooted at least
every 3 minutes.

Additionally it becomes very unhandy to run
High Interaction Honeypots once you need to ex-
tract the sample, e.g. in order to submit it to a
virus researcher. Most recent malware tries to hide
using rootkit-like techniques or is simply that abu-
sive so it slows your honeypot down so much, you
cannot handle it. Sometimes it is even hard to ob-
tain a sample from a clean directory view when the
virtual harddrive is mounted outside of the virtual
machine.

Even if one argues that High Interaction Honey-
pots can be used for immediate observation of the
command and control structure since they auto-
matically connect after infection, you would need
an increasing amount of honeypots. Each honey-
pot could only be infected once and could not be
reverted before the botnet was taken down or it was
decided that monitoring is not necessary anymore.

2 Medium Interaction Honey-
pots

Medium Interaction Honeypots try to combine the
benefits of both approaches in regards to botnet
detection and malware collection while removing
their shortcomings.

The key feature of Medium Interaction Honey-
pots is application layer virtualization. These kind
of honeypots do not aim at fully simulating a fully
operational system environment, nor do they im-
plement all details of an application protocol. All
that these kind of honeypots do is to provide suf-
ficient responses that known exploits await on cer-
tain ports that will trick them into sending their
payload.

Once this payload has been received, the shell-
code is extracted and analyzed somehow. The
Medium Interaction Honeypot then emulates the
actions the shellcode would perform to download

the Malware. Therefore the Honeypot has to pro-
vide some virtual filesystem as well as virtual stan-
dard Windows download utilities. The Honeypot
can then download the Malware from the serving
location and store it locally or submit it somewhere
else for analysis.

2.1 Existing Implementations

Several implementations of this principle have been
recently published, some being Open Source soft-
ware and others being strictly commercially dis-
tributed. We will discuss the most widespread and
popular implementations in the following.

2.1.1 mwcollectd

mwcollectd was the first Open Source Medium In-
teraction Honeypot available. It was published to-
gether with the paper ”Sammeln von Malware in
nicht-nativer Umgebung” [2] by Georg Wicherski
as the underlying proof of concept. In September
2005, version 3.0 — a complete rewrite — was re-
leased which was even more modular and improved
some shortcomings of the old mwcollectd version.

mwcollectd was merged with the nepenthes
project in February 2006 to reduce redundant de-
velopment and join forces. Since both projects
were already licensed under the GNU Public Li-
cense, there were no further licensing issues. The
nepenthes code was used as new code-base as it
contained more vulnerability modules and there-
fore had a higher success rate deployed in the wild.
Hence the project name of nepenthes was used fur-
ther.

2.1.2 Multipot

Multipot [3] is a graphical Medium Interaction
Honeypot for Windows and therefore has limited
scalability for distributed and dedicated deploy-
ment. Initially released in July 2005 by iDefense,
it was limited to catching Bagle variants, but has
developed somewhat since then. It has the proof of
concept character, the first mwcollect versions had.

2.1.3 nepenthes

nepenthes was released in June 2005 by Paul
Bécher and Markus Kotter, implementing the de-
sign of mwcollect 3.0, which was already published

by Georg Wicherski at that time, but not yet imple-
mented. Both projects co-existed until the above
mentioned project merge in February 2006. ne-
penthes is now the de-facto industry standard in
Open Source Medium-Interaction-Honeypots.

nepenthes is now published by the mwcollect.org
development crew, consisting of all three, Paul
Béacher, Markus Kotter and Georg Wicherski.
Since new vulnerabilities, shellcodes and bots are
emerging every day, development is steadily con-
tinued.

3 Inside View on nepenthes

We will now have a closer look at the internals
of the nepenthes daemon and it’s modules. The
nepenthes team aimed at developing a standalone
console daemon designed to be deployed on differ-
ent UNIX sensors distributed about a diverse IP
space. Therefore the configuration is done via files
in a configuration directory and minimally the com-
mand line. The daemon is POSIX compliant and
autotools is used for compilation, thus it runs on a
wide variety of UNIXes, ranging from Gentoo Linux
to Solaris SPARC-64.

nepenthes is designed as a totally single-threaded
daemon. All I/0O, including network receives and
send are buffered in the daemon itself. As long
as there is no incoming data, the main-loop sleeps
using the poll system call. Because of this, the
daemon does not consume any resources as long as
there is no malicious input given. A single-threaded
design additionally eliminates the risk of deadlocks
and the need for mutexing, which would have be-
come very complex if the whole nepenthes daemon
was multi-threaded.

3.1 Modularization

The nepenthes program is divided into the core
daemon and multiple modules performing different
tasks. This modularity ensures an easily maintain-
able source code of the program. Additionally it
allows turning off certain features or parts at run-
time or in the configuration files.

The heart of the program is the actual daemon
itself, linked as an executable ELF binary. It pro-
vides the main function wrapping around an OOP
daemon core, which is responsible for loading all

modules, running the main loop and most impor-
tantly providing the network interfacing API as
well as inter module communication facilities.

To satisfy overlapping port binding require-
ments, the nepenthes daemon creates it’s own
wrappers around the UNIX socket functions.
Therefore multiple vulnerability modules can sub-
scribe to connections on the same port and have a
look at the incoming data until one module decides
that this data is meant to exploit a vulnerability
specifically simulated by that module. The other
modules will then be dropped from the data sub-
scription.

Modules are dynamically linked libraries (.so
on most UNIXes), providing a single startup and
cleanup function, which wrap around the creation
and deletion of an OOP module class, respectively.
There are different types of modules, discussed in
the following.

3.1.1 Vulnerability Modules

Vulnerability Modules pose the entry point of mal-
ware into the Honeypot. They provide the simu-
lation of certain vulnerable services to the extent
that known exploits need to be lured into sending
their payload.

Once this payload is received, the shellcode is ex-
tracted and passed to a shellcode handler module.
Since the exploits are known, it is not required to
utilize statistic means to find the shellcode. Often
it is sufficient to do some offset calculation or look
for specific cookies.

3.1.2 Shellcode Handlers

These modules analyze given binary dumps of the
shellcodes coming over the wire, independent from
the exploit they were delivered with. How the shell-
code handler modules determine the actions, the
shellcode would have performed on a real machine,
is completely up to the modules’ authors. The core
simply provides them with a set of functions used
to emulate the possible actions a shellcode could
take.

Opening of a shell, downloading of files and sim-
ilar actions are then directly mapped to the corre-
sponding modules by the dispatching mechanisms
described below.

vuln-lIsass

 —

shellcode-signature

’
i
i
i
i
i
i
i
i
i
i
i
i
i
i
!
i
! vuln-dcom
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
.

download-http submit-file

download-ftp

submit-gotek |

log-irc

log-prelude

Figure 2: Module call graph for common exploitation attempt

3.1.3 Shell Emulations

Most malware spreading in-the-wild today is so un-
sophisticated that it still uses plain bind or reverse
shell shellcodes, therefore the core provides a rudi-
mentary shell emulation with a virtual filesystem.
Each exploitation attempt triggers a new instance
of this filesystem to prevent corruption of the hon-
eypot in run-time by virtual filesystem corruption.

Shell Emulation modules provide command em-
ulations for the virtual shells. The implementation
of a Windows shell in the core for example only con-
tains rudimentary commands like echo or START.
Download clients like Windows’ ftp.eze command
line client have to be emulated by such a Shell Em-
ulation module. However, it is important to note
that the module does not perform the actual down-
load, it only emulates the executable’s run-time be-
havior and extracts the information from the given
input. The actual download is then passed to a
Download Module.

Some malware also requires relatively complex
emulation of the Windows shell to infect the hon-
eypot correctly as can be seen in figure 3.

3.1.4 Download Modules

Download Modules register themselves as protocol
handler for a specific type of URLs at the core.
They then get informed once a Shell Emulation or

Shellcode Handler detects the download of an URL
and download the specified URL. Such URLs are
not only limited to http:// but can also contain
uncommon protocols as tftp:// or rep://.

Certain download mechanisms like such as the
non-standardized protocol linkbot uses (link://
protocol handler) require additional information
about the transfer, as in this case an authentica-
tion key. This information is then encoded in the
URL as well.

3.1.5 Submission Modules

Once a binary has been downloaded, it is passed
to the submission modules for further processing.
The most intuitive and obvious action to take upon
a binary is to store it on the hard drive for later
analysis — this is what the submit-file module does.

Another submission module contained in the ne-
penthes main distribution automatically submits
the downloaded binary to the Norman Sandbox
Live Demo on the Internet. A virtualized sandbox-
ing is then performed on the binary and a report,
what the malware would do on a real computer is
sent to a specified email address.

Furthermore, there is a submission module that
directly submits downloaded samples to the mwcol-
lect Alliance, which is discussed in detail further be-
low. A similar module submits binaries to a central

cmd.exe /c echo open static984.amdwebhost.com 21 >appmr.dll &

user majic 6AV1EMzJ >>appmr.dll &
echo binary >>appmr.dll &

echo get asn.exe >>appmr.dll &
echo bye >>appmr.dll &

ftp.exe -n -s:appmr.dll &

del appmr.dll &

asn.exe

Figure 3: Example shell command set used by a rBot

server via XML-RPC, but also provides additional
information about the download process.

3.1.6 Log Modules

Log modules implement the very simple task of log-
ging to different targets than a file on the hard disk
— the hard disk logging is part of the core. Possi-
ble targets at the moment are a syslog daemon and
an IRC channel. Both provide convenient ways of
observing your sensors in real-time.

3.1.7 Miscellaneous Modules

Since all kinds of modules appear the same to the
core and it exports all its interfaces to all modules,
there is no need to restrict the design of a module to
one of the above types. On the one hand, multiple
types can be combined in one module. A shellcode
handler for a shellcode that only appears together
with one certain exploit could be handled in the ap-
propriate vulnerability module. On the other hand,
modules not fitting in the above scheme at all could
be created.

One example is the portwatch module contained
in the current nepenthes main distribution. Its sole
purpose is to log connections to a certain port in
order to determine, whether it is required to cre-
ate additional vulnerability modules for these ports
based upon demand.

Some other institutions wrote non-public mod-
ules which automatically add hosts actively spread-
ing malware to a firewall blacklist, ultimately turn-
ing nepenthes into an Intrusion Prevention System.

3.2 Events and Dispatchers

The core glues all loaded modules together by pro-
viding different means of inter module communi-
cation. Since a module cannot know which other
modules are loaded at run-time, dynamic relinking
at module load is not possible.

The generic way for inter module communication
is the EventManager class, the nepenthes core pro-
vides. It allows modules to register for the handling
of certain event types or a new, module defined
event type. Additionally, modules can fire events
of a predefined or already registered types to the
event manager. It then distributes these events to
all handlers masked for the event type. Events can
contain arbitrary data, including binary data.

Dispatchers are a more specialized way for inter
module communication. They are used to delegate
analysis of certain tasks to other modules. There-
fore there exists a dispatcher for shellcodes, one for
downloads and one for submissions. Internally they
work similar to the event dispatcher, without spe-
cific event types.

This differentiation between these similar models
originates from the initial mwcollectd design where
there was no event manager yet. Future plans in-
clude the substitution of the three dispatchers with
an event type for each of them.

3.3 Case Study: rBot Infection

In the following, we will see how a classical — maybe
modded — rBot tries to infect our nepenthes hon-
eypot. The infected host first establishes a TCP
connection to port :445 of our honeypot to exploit
the PNP vulnerability, Zotob.A became famous for

as well. It sends a shellcode as payload, which
will call the CreateProcess function to execute ar-
bitary commands packed into the shellcode.

The bot issues the commands shown in Fig-
ure 3. It first creates an fip.exe instruction
file by issuing Windows shell echo commands and
redirecting them into a file. It then launches
ftp.exe in silent batch mode to download the
bot’s binary. All this information is turned
into the simple URL ftp://majic:6AV1IEMzJ
@static984.amdwebhost.com:21/asn.exe by the
shell emulation modules, which support even more
cryptic shell command sequences.

nepenthes then connects to the given FTP server
and downloads the specified binary. After the
transfer has been completed successfully, the bi-
nary is passed to the submission modules. Since the
submit-norman module sent the bot to the Norman
sandbox, we soon have more information about this
malware specimen in our inbox. After a short read
over the report, it turns out that this bot connects
to the IRC server dynamic1086.amdwebhost.com
on port 6667 and joins the channel #asn3 with the
keyword NdrVyk5D.

4 Evaluation

Medium Interaction honeypots have proved to be
very efficient in the collection of autonomously
spreading malware. The vast majority of malware
spreads using similar patterns, including common
exploits, common shellcodes and common shell
scripts. There have been no known counter reac-
tions towards medium interaction honeypots yet.

Medium Interaction Honeypots can be detected
relatively easily. Although DNAT could make it
possible, it is very rare for a machine to serve
both Windows RPC ports and a Linux Apache at
once. Additionally, nepenthes sensors can be fin-
gerprinted relatively easily by testing for non emu-
lated service portions as only the necessary parts to
receive a payload are implemented. Another pos-
sibility, although risky when fingerprinting produc-
tion environments, would be to exploit a host twice,
leaving a trace on the filesystem and checking for
it upon the second exploitation.

nepenthes has proved to be stable and has a
good performance in deployments of large net-
works, ranging up to a single machine serving a

whole /18 subnet. The majority of vulnerabilities
currently being exploited in-the-wild can be emu-
lated by nepenthes. Additionally, the daemon can
be used in a lot of different ways due to its mod-
ularity, ranging from plain collection to hard drive
over geographical mapping of attacks to Intrusion
Prevention mechanisms.

The daemon is already deployed on several sites
on the Internet and is considered to be stable pro-
duction software.

5 Related Work

Several different projects have emerged around
Medium Interaction Honeypots and are now related
to the nepenthes project. Via modularization and
customizable nature, several different web inter-
faces have been developed individually by owners
of nepenthes sensors. Some law enforcement orga-
nizations and other governmental organizations are
known to deploy nepenthes sensor on the Internet
and in internal networks.

5.1 mwcollect Alliance

Initially derived from the mwcollectd project, the
mwecollect Alliance [4] is a non-profit organization
aiming at malware collection. This closed commu-
nity deploys nepenthes sensors on the Internet and
combines this data together with other malware
sources in a central database. Rough analysis of
the data is performed on the Alliance’s server in
real-time.

The database’s license ensures that members of
the Alliance do not distribute any samples obtained
from the database to any other third parties. Mem-
bership to the Alliance can be applied for via email,
at which point a careful examination of the appli-
cant is then performed.. Membership is free, but
limited to people or organizations steadily provid-
ing the Alliance with new samples, e.g. by deploy-
ing a nepenthes sensor.

5.1.1 gotekd Daemon

gotekd is the daemon handling the binary submis-
sions of nepenthes sensors or the respective com-
mand line client on the Alliance’s server in real-
time. It was developed by Georg Wicherski and

is considered stable now as well. It feeds the Al-
liance’s MySQL database with samples and addi-
tional information.

The underlying protocol is binary and uses a
scheme similar to HMAC with SHA-512 for au-
thentication at the server. Existence of binary is
also tested based upon the SHA-512 hashes of the
binaries. Once a new binary is detected by one of
the sensors, it is streamed to the server over an
additional data connection.

The daemon is published under the Gnu Public
License and freely available to the public.

5.1.2 Webinterface

The Alliance utilizes a closed internal webinterface
for communication and coordination as well as data
aggregation. This webinterface is written in PHP
and MySQL and based upon wordpress, DokuWiki
and custom code for the malware database. Its
sourcecode is not publicly available.

5.2 Surfnet IDS

The Surfnet IDS [5] project aims at creating a
simple to manage, distributed intrusion detec-
tion system for the Dutch university ISP Surfnet.
nepenthes is deployed on one single physical
workhorse and sensors are linked to it by an Open-
VPN tunnel. Therefore the sensor can be contained
on a single USB stick to boot from and does not
change in configuration or in software as only the
central nepenthes sensor has to be configured and
updated.

6 Acknowledgments

Thanks go to Markus Kotter and Paul Béacher for
technical review as well as Andre DiMino for lan-
guage review.

This paper was written as a part of a school work
in computer science, supervised by Werner Voss.

References

[1] Honeynet Alliance (2005); Know
your Enemy: Tracking Botnets;
http://www.honeynet.org/papers/bots/

[2] Georg Wicherski (2005); Sammeln von Malware
in nicht-nativer Umgebung

[3] Multipot Honeypot;
http://labs.idefense.com/labs-
software.php?show=9

[4] The mwecollect Alliance;

https:/ /alliance.mwcollect.org/
[5] Surfnet IDS Project; http://ids.surfnet.nl/

